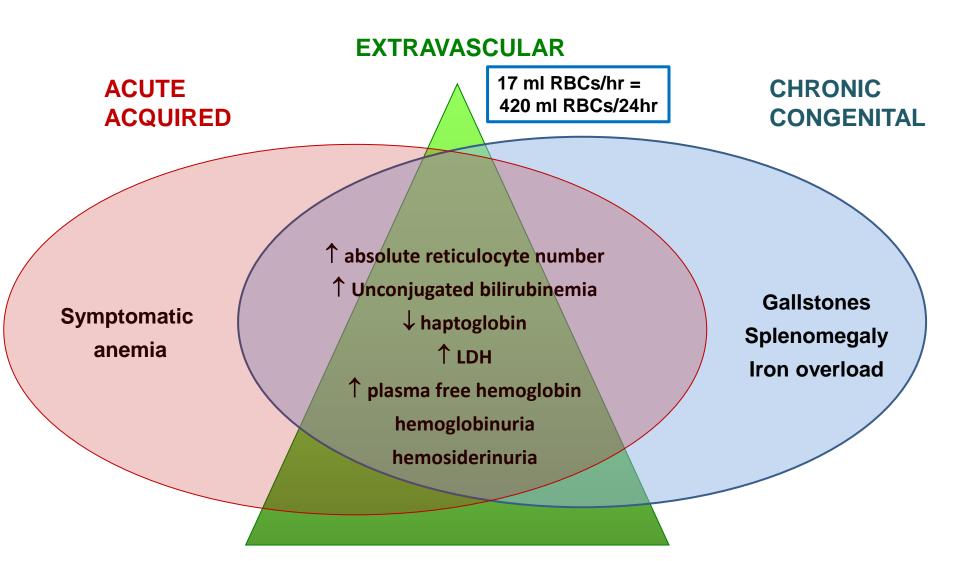


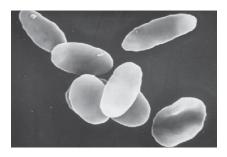
Investigating the Haemolytic Patient

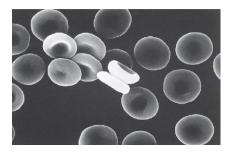

Paola Bianchi Fondazione IRCCS Ca' Granda Ospedale Maggiore Milano

Diagnostic aspects of:

- ✓ Red cell membrane defects
 - hereditary spherocytosis
 - defects of permeability and cell volume regulation
- ✓ Defects of red cell metabolism
 - pyruvate kinase deficiency
- ✓ Targeted Next Generation Sequencing panels

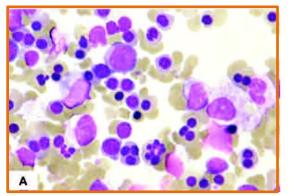
Haemolysis: RBC destruction


INTRAVASCULAR

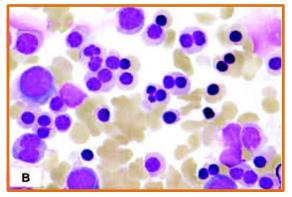

200 ml RBCs in 1 hr

Major causes of congenital red cell disorders

- Disorders of hemoglobin / unstable hemoglobins *e.g.* HbS
- Defective structure and/or function/permeability of the red cell membrane, *e.g.* hereditary elliptocytosis
- Disorders of red blood cell metabolism, e.g. pyruvate kinase deficiency

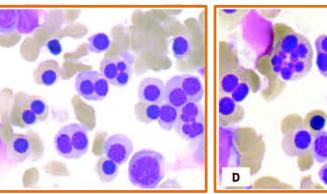


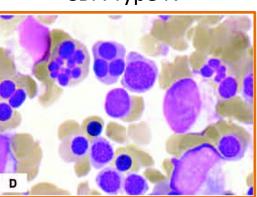
Rare /very rare diseases

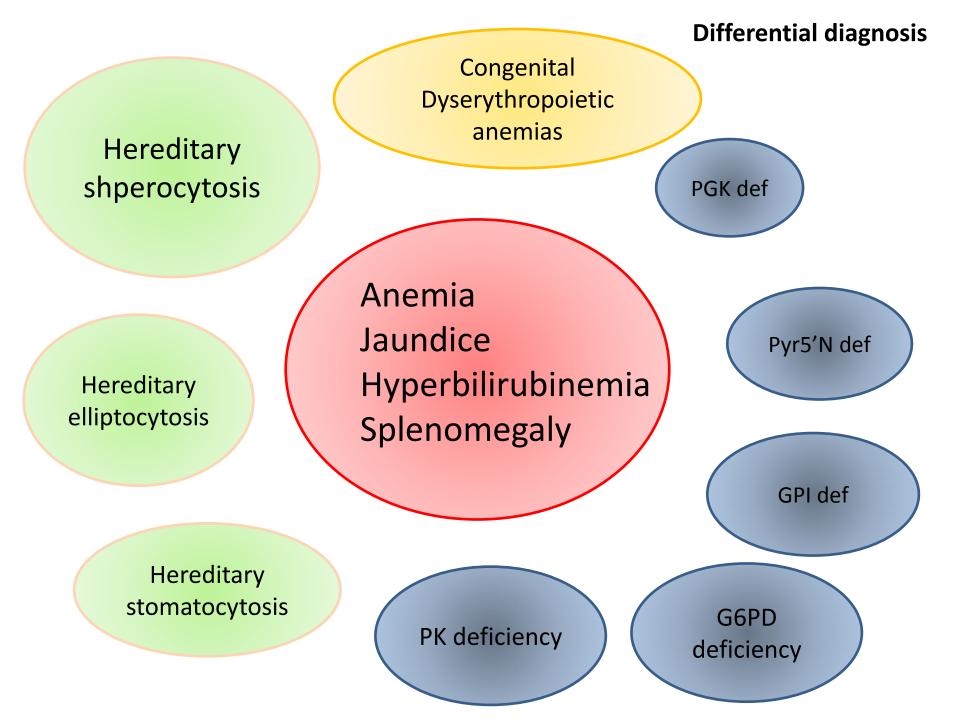

Congenital dyserythropoietic anemia (CDA)

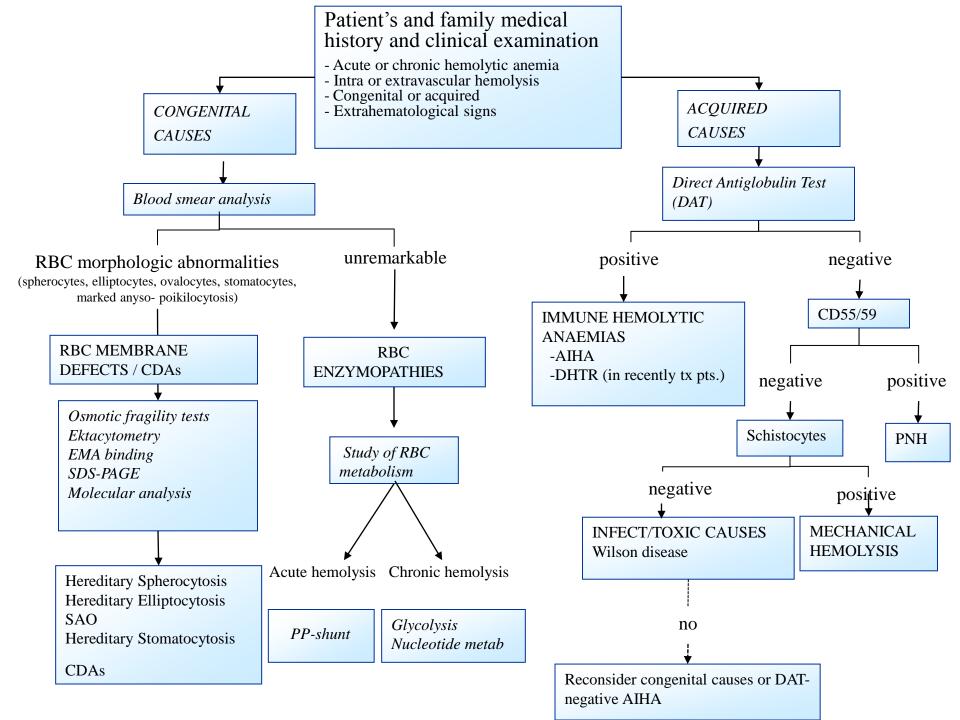
Heterogeneous group of hemolytic anemias characterized by ineffective erythropoiesis and by distinct morphological abnormalities of erythroblasts in the bone marrow.

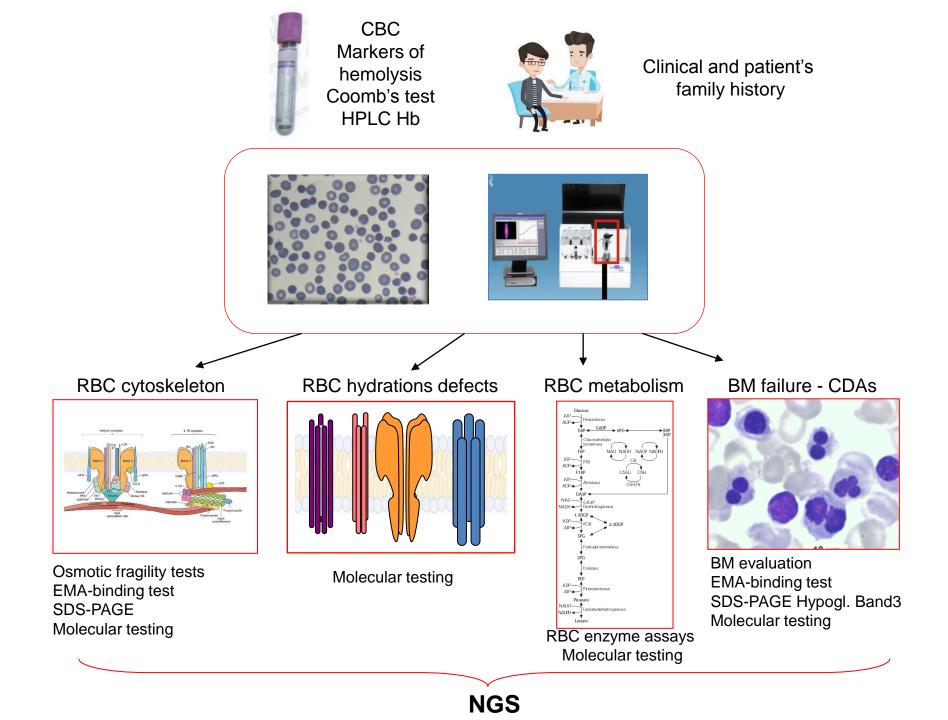
CDA type I

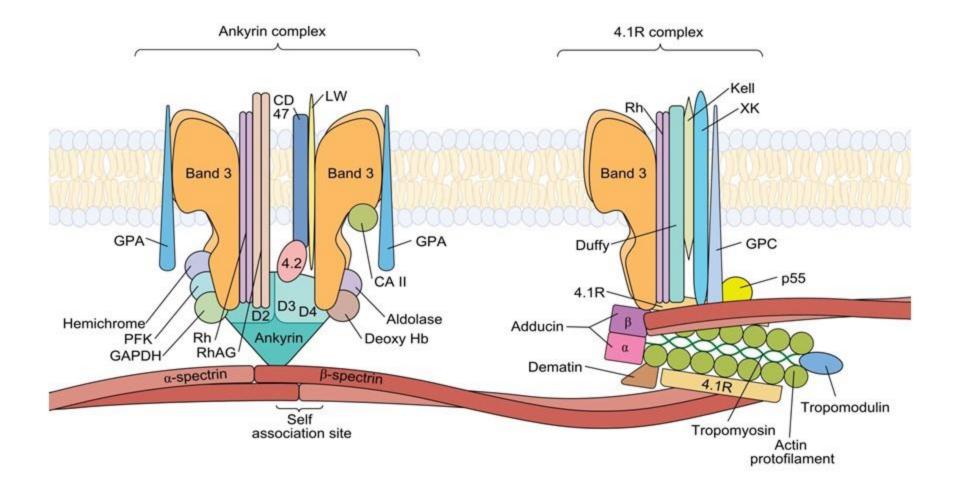



CDA Type II

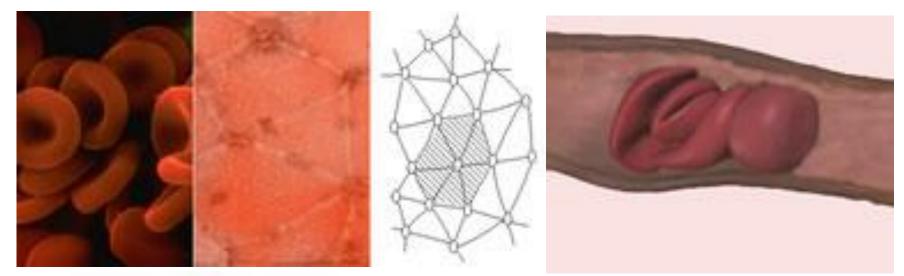


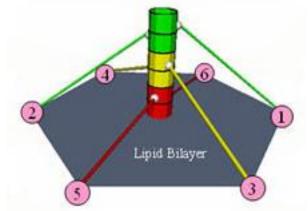

CDA type III


CDA Type IV

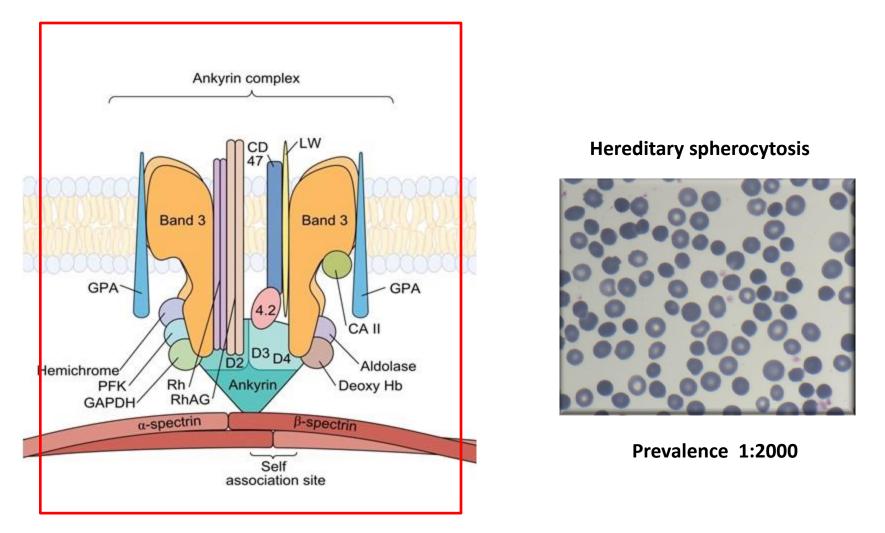


Diagnostic aspects of:

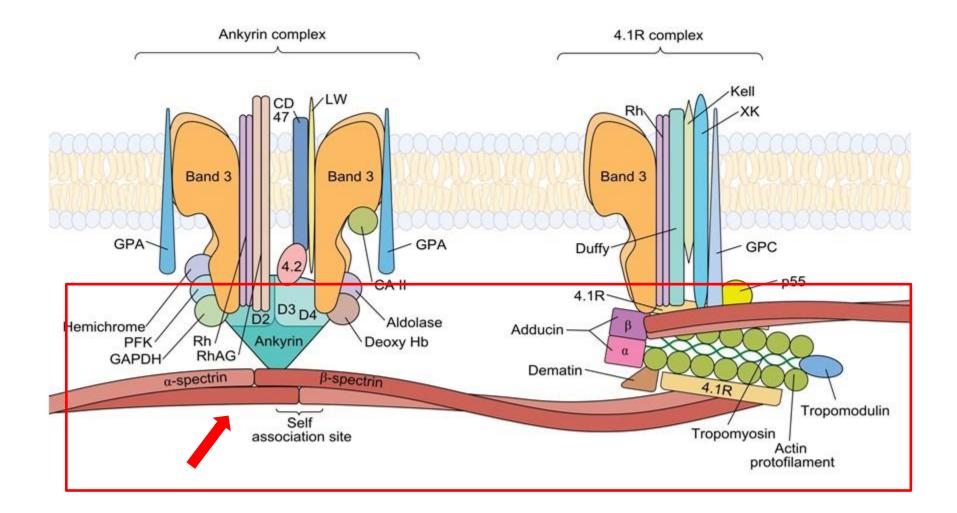

- ✓ Red cell membrane defects
 - hereditary spherocytosis
 - defects of permeability and cell volume regulation
- ✓ Defects of red cell metabolism
 - pyruvate kinase deficiency
 - Targeted Next Generation Sequencing panels


Red cell membrane disorders

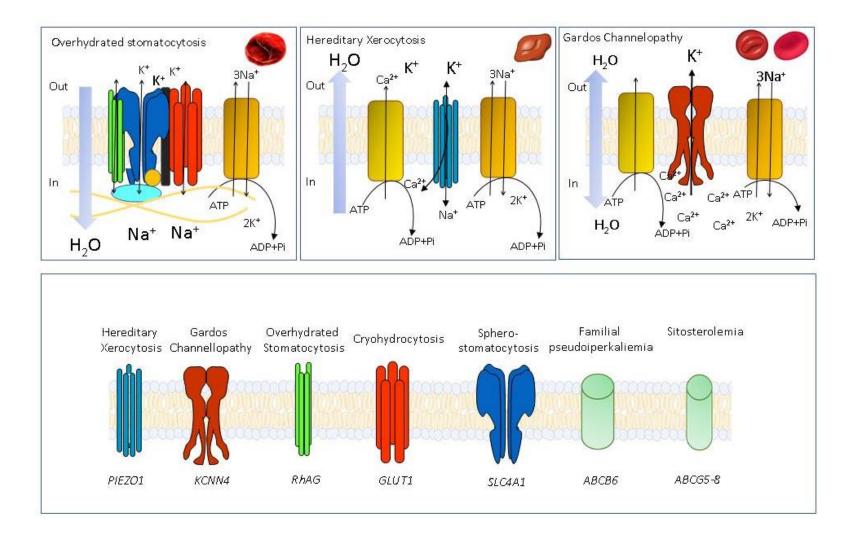
From: Bianchi P, M Narla, Post Graduate Hematology 7 eds., 2015



The six spectrin fibers attach at precise positions on the proto-filament. The more a red blood cell is mechanically deformed, the more likely individual proto-filaments will rotate like baseball bats swung over home plate, which in this case is the lipid layer of a cell membrane.


"Scientists Discover Secret Behind Human Red Blood Cell's Amazing Flexibility". By Rex Graham, Jacobs School of Engineering, October 2005

Hereditary spherocytosis

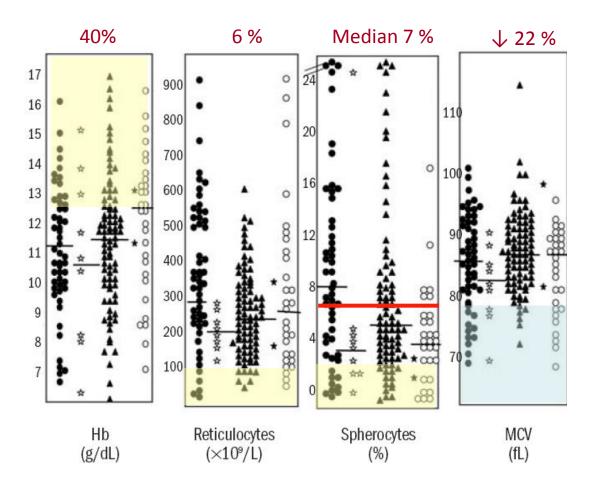

Definition: Hereditary spherocytosis (HS) is a genetically determined chronic haemolytic anaemia characterized by the spherical shape of the affected red cells.

Hereditary elliptocytosis

RBC hydration defects

Modified from Badens & Guizouran, 2016 Fermo et al, 2018

Protein	Gene	Position	Function	Phenotype
α-spectrin	SPTA1	1q23.1	Membrane skeletal network	HS HE HPP
β-spectrin	SPTB	14q23,3	Membrane skeletal network	HS HE
Ankyrin	ANK1	8p11.21	Vertical interactions	HS
Protein Band 3	SLC4A1	17q21.31	 Anion exchange channel Link to glycoltytic enzymes Veritcal interactions 	HS SAO HSt
Protein 4.2	EPB42	15q15.2	Stabilize band3/ankyrin complex	HS
Protein 4.1	EPB41	1p35.3	Stabilize spectrin-ankyrin contact	HE
Glycophorin C	GYPC	2q14.3	Gerbich - blood group	HE
FAM38A	PIEZO1	16q24.3	Mechanosensitive ion channel	HX Polycythemia
Gardos channel KCa3.1	KCNN4	19q13.31	Potassium Calcium-Activated Channel	HSt
Rh associated Glycoprotein	RHAG	6p12.3	Rh -blood group	OHSt
GLUT1	SLC2A1	1p34.2	Glucose transporter	СНС
ABC transporter Superfamily	ABCB6	2q35	Porphyrin transporter	Fam. PHYK


HS: I level laboratory investigations

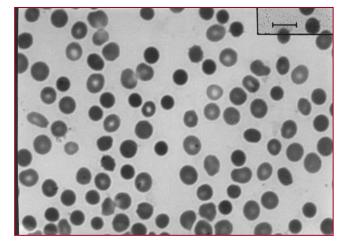
ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders. King et al Int J Lab Hematol. 2015

The laboratory diagnosis of HS is based upon a combination of clinical history, family history, physical examination and laboratory data

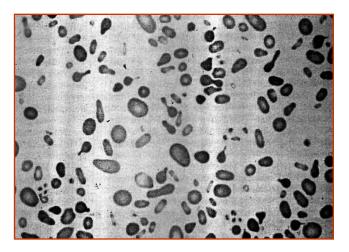
Clinical features:	Splenomegaly, jaundice
Laboratory cell indices:	↓ Hb, ↓MCV, 个MCHC, 个RDW
Direct antiglobulin test:	Negative
Evidence of hemolysis:	个 Unconjugated bilirubin, 个 Absolute reticulocytes number Consumed atoglobulin
Blood film:	Anisopoichylocytosis, spherocytes

HS: Haematological parameters

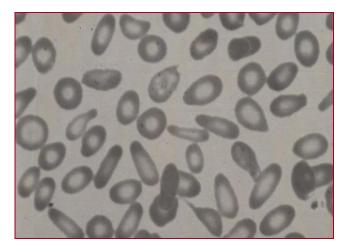
Not always standard hematologic parameters give specific diagnostic indications!

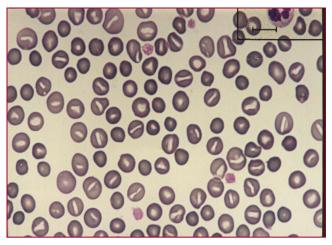


Mariani et al 2008

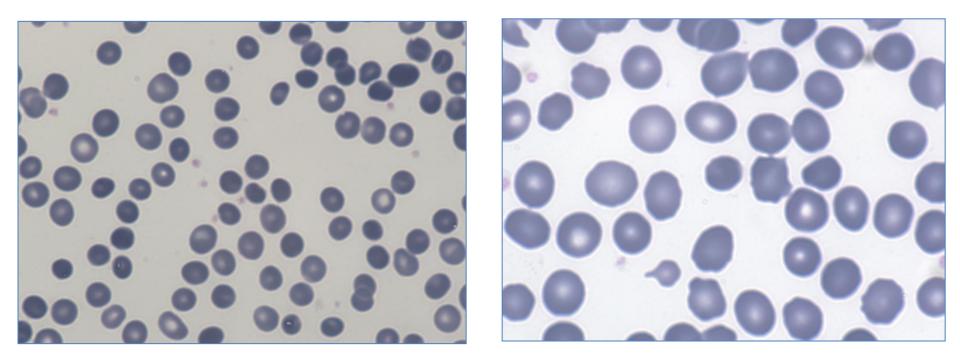

Automated red cell parameters in the prediction of HS

Danise et al 2001	- RDW/HDW ratio significantly greater in CDA II than HS - CHDW/CHDWr ratio significantly lower in CDA II than HS RDW= anisocytosis; HDW= anisochromia; CHDWr= cell Hb content of reticulocytes	p<0.0002 p<0.0002
M. Chiron, et al 1999	HS samples MSCV < MCV Mean Spherized Corpuscular Volume, assessed during the retics count procedure under hypoosmotic conditions)	Sensitivity 100% Specificity 93.3%
Brosèus, et al 2010	Delta MCV-MSCV >9.6fL Beckman coulter cell analyzer	
Da Costa et al 2001	Reticulocyte volume <100fL HS (except for neonates) Advia H*3 Bayer	
Mullier F. et al 2011	Hs screening index [%MicroR%/HypoHe]: < 4 %MicroR: (% of particularly small erythrocytes <60 fL) %Hypo-He: (% of erythrocytes with particularly low Hb) Spherocytosis quotient [Reticulocytes/IRF (Immature Reticulocyte Fraction)] Sysmex analyzer	Sensitivity 94.4% Specificity 94.3%
Persijn L et al 2012	Modification of Mullier algorithm Sysmex analyzer	Sensitivity 100%
Lazarova , et al 2014	mean reticulocyte volume (MRV) immature reticulocyte fraction (IRF) Delta MCV-MSCV Beckman Coulter cell analyser	Sensitivity 100% Specificity 88%
Bobée V et al, 2018	Hb, retics, IRF, MicroR, and %HypoHe (47 HS, 17 PKD) Sysmex XE-500 analyzer	Sensitivity 100% Specificity 92.1%


Red cell morphology


Hereditary spherocytosis (HS) 1:2000 Dom.Tr (75% of cases)

Hered. Pyropoikilocytosis (HPP) Non-Dom. Tr


Hereditary elliptocytosis (HE) 1:4000 Dom. Tr

Hereditary stomatocytosis (HSt) 1:50000 – 1:100000 Dom. Tr **RED CELL MORPHOLOGY** Differential diagnosis

Autoimmune hemolytic anemia

Congenital dyserythropoietic anemia type II

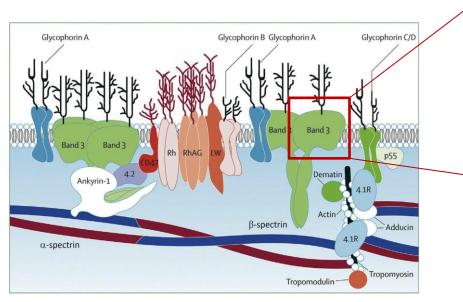
HS: Specific tests

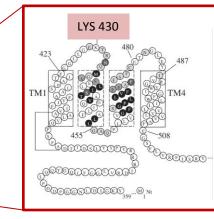
SDS-PAGE of red cell membrne proteins

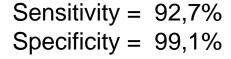
Osmotic fragility (OF) test (Parpart et al, 1947) Acidified glycerol lysis test (AGLT) (Zanella et al, 1980) The Pink test (Vettore & Zanella, 1984) Hypertonic cryohaemolysis test (Streichman & Gescheidt, 1998) Eosin-5-maleimide (EMA) binding (King et al, 2000)

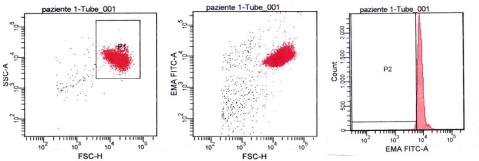
Hypoglycosylated Band3

CDAII CDAII Ctr


EMA BINDING TEST

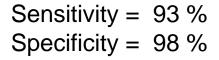

British Journal of Haematology, 2000, 111, 924-933

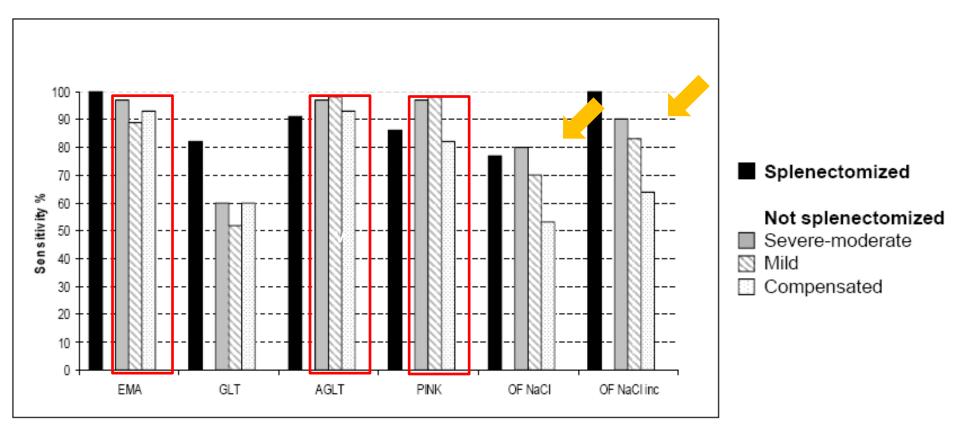

Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia


MAY-JEAN KING,¹ JUDITH BEHRENS,² CHRIS ROGERS,³ CLARE FLYNN,⁴ DAVID GREENWOOD⁵ AND KEITH CHAMBERS⁶ ¹International Blood Group Reference Laboratory, Bristol, ²Department of Haematology, St. Helier Hospital, Carshalton, ³Research and Development Support Unit, Southmead Hospital, Bristol, ⁴Department of Haematology, St. Mary's Hospital, London, ⁵Department of Haematology, Southmead Hospital, Bristol, and ⁶Department of Haematology, Leicester Royal Infirmary, Leicester, UK

Received 12 June 2000; accepted for publication 13 July 2000

Sensitivity of diagnostic tests according to clinical phenotype


Articles and Brief Reports


Red Cell Disorders

Diagnostic power of laboratory tests for hereditary spherocytosis: a comparison study in 150 patients grouped according to molecular and clinical characteristics

Paola Bianchi,¹ Elisa Fermo,¹ Cristina Vercellati,¹ Anna P. Marcello,¹ Laura Porretti,² Agostino Cortelezzi,^{1,3} Wilma Barcellini,² and Alberto Zanella¹

¹U.O. Ematologia 2, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; ²Centro di Medicina Trasfusionale, Terapia Cellulare e Criobiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy, and ³U.O. Ematologia 1 e Centro Trapianti di Midollo, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico e Università degli Studi di Milano, Milan, Italy

Diagnostic power of laboratory tests for hereditary spherocytosis: a comparison study in 150 patients grouped according to molecular and clinical characteristics

Paola Bianchi,¹ Elisa Fermo,¹ Cristina Vercellati,¹ Anna P. Marcello,¹ Laura Porretti,² Agostino Cortelezzi,^{1,3} Wilma Barcellini,¹ and Alberto Zanella¹

¹U.O. Ematologia 2, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; ²Centro di Medicina Trasfusionale, Terapia Cellulare e Criobiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy, and ³U.O. Ematologia 1 e Centro Trapianti di Midollo, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico e Università degli Studi di Milano, Milan, Italy

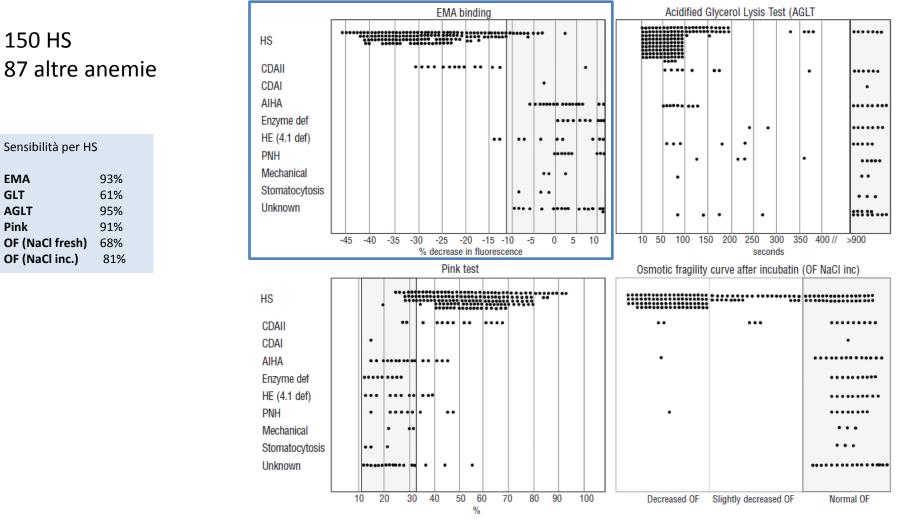
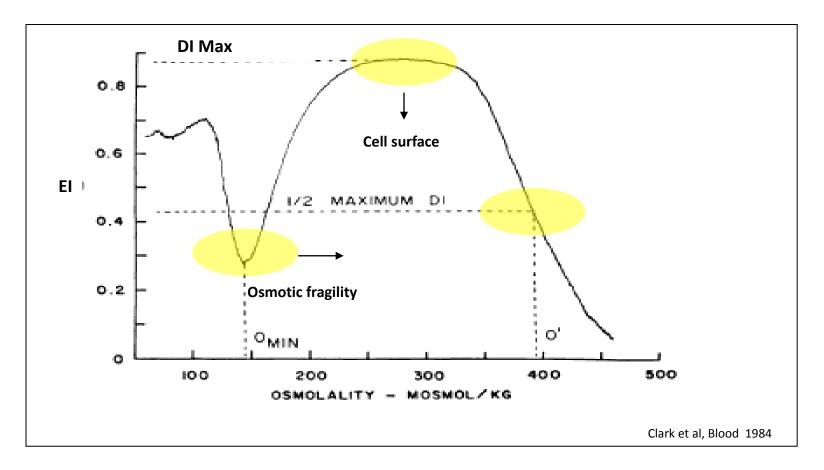
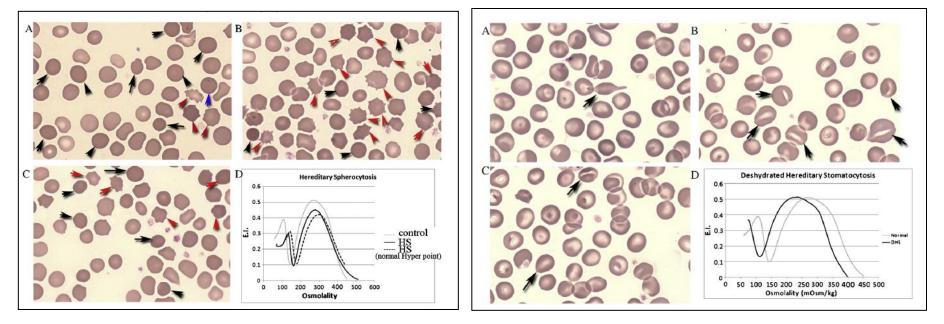
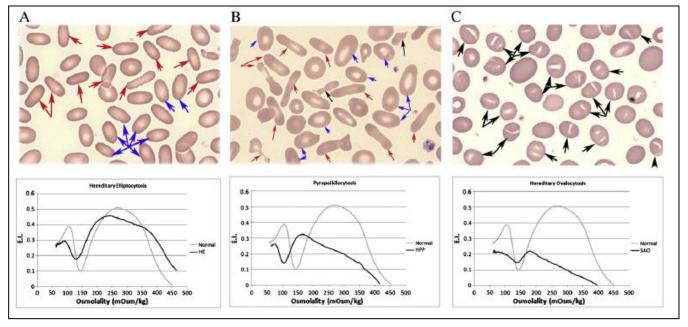



Figure 2. Results of individual diagnostic tests in patients with hemolytic anemias other than hereditary spherocytosis (HS), compared with those with HS. The shaded area represents normal reference intervals. CDA: congenital dyserythropoletic anemia; AIHA: autoimmune hemolytic anemia; HE: hereditary elliptocytosis; PNH: paroxysmal noctural hemoglobinuria

Ektacytometry - Laser-assisted Optical Rotational Cell Analyzer LoRRca MaxSis



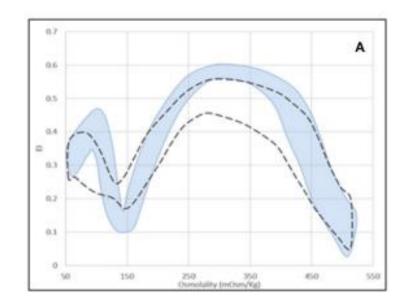
High repeatability, riproducibility



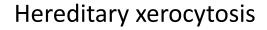
Hereditary Spherocytosis

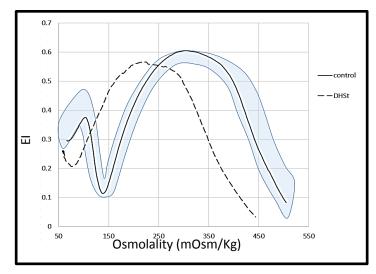
Dehydrated Stomatocytosis

Hereditary Elliptocytosis

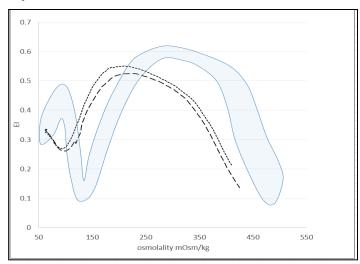

L. Da Costa, 2013

Use of Laser Assisted Optical Rotational Cell Analyzer (LoRRca MaxSis) in the Diagnosis of RBC Membrane Disorders, Enzyme Defects, and Congenital Dyserythropoietic Anemias: A Monocentric Study on 202 Patients.

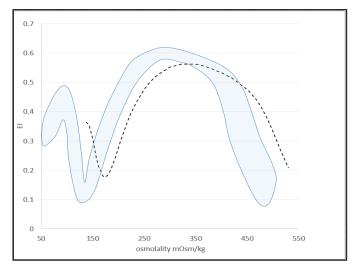

Zaninoni A, Fermo E, Vercellati C, Consonni D, Marcello AP, Zanella A, Cortelezzi A, Barcellini W, Bianchi P

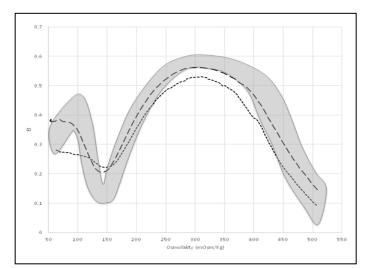

140 patients affected by RBC membrane disorders, 37 by enzymopathies, and 16 by CDAII

- All the HS regardless the biochemical defect, showed altered Osmoscan curves,
- Hereditary elliptocytosis (HE) displayed a trapezoidal curve and decreased Elmax.
- Dehydrated hereditary stomatocytosis (DHSt) caused by *PIEZO1* mutations was characterized by left-shifted curve

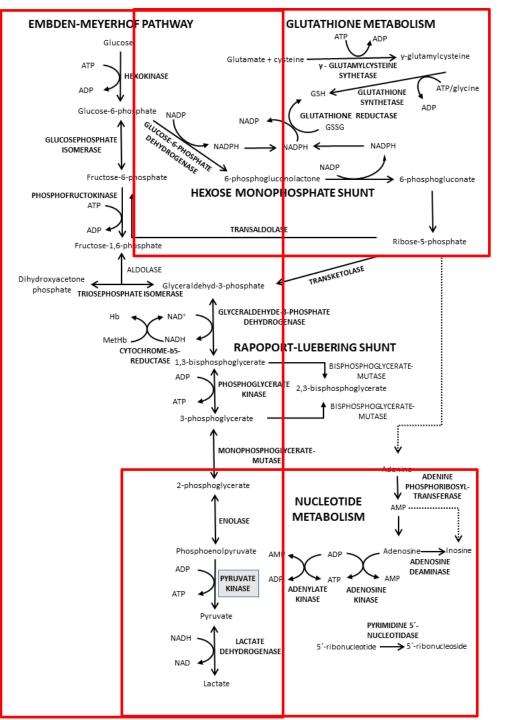


Effect of splenectomy of RBC of patients with hemolytic anemias




β -thal trait

Overhydrated stomatocytosis



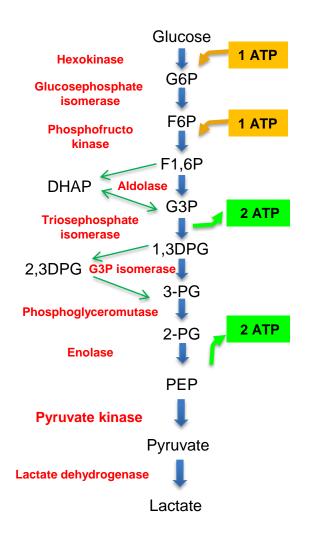
Gardos Channel variants

Diagnostic aspects of:

- ✓ Red cell membrane defects
 - hereditary spherocytosis
 - defects of permeability and cell volume regulation
- ✓ Defects of red cell metabolism
 - pyruvate kinase deficiency
- ✓ Targeted Next Generation Sequencing panels

Congenital hemolytic anemias due to RBC enzyme defects

Methemoglobinemia


Erythrocytosis

Hemolytic anemia (acute o chronic)

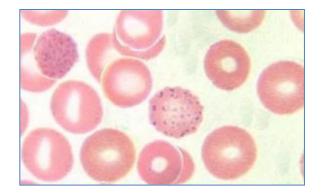
The type and degree of haemolysis in CNSHA depends on:

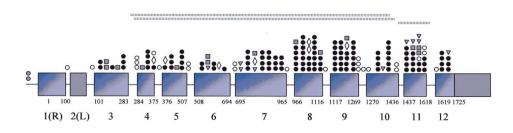
- · the metabolic cycle involved
- · the relative importance of the affected enzyme
- the functional properties of the mutant enzyme with regard to kinetic abnormalities and/or instability
- the ability to compensate for the enzyme deficiency by over-expressing isoenzymes or using alternative pathways

The Embden-Meyerof pathway

In red blood cell glycolysis is the main source of Metabolic energy

- To keep the iron of hemoglobin in the functional form
- To maintain intracellular ions concentration
- To protect from oxydative stress
- To maintain the red cell shape


Enzyme	Gene	Position	N. of cases	Phenotype	
Embden-Meyerof pathwa	Embden-Meyerof pathway				
Hexokinase	HK1	10q22.1	20 cases	CNSHA	
Glucosephosphate isomerase	GPI	19q13.11	>50 fam	CNSHA Mental retardation?	
Phosphofructokinase	PFK-M PFK-L	12q13.11 21q22.3	~75 cases	Erythrocytosis, minimal hemolysis, Tarui disase, muscle disease	
Aldolase	ALDOA	16p11.2	6 cases	CNSHA, mental retardation Dysmorphism	
Triosephosphate isomerase	TPI1	12p13	~75 cases	CNSHA, neuromuscular disease, Infections	
Phosphoglycerate kinase	PGK1	X13.3	40 cases	CNSHA, neuromuscular disease	
Pyruvate kinase	PKLR	1q22	>500 fam	CNSHA	


Diagnosis of RBC enzyme defects

- Morphological analysis usually unremarkable, except in P5N deficiency
- Demonstration of the specific enzyme defect by measuring red blood cell enzyme activities (Beutler, 84)
- Other clinical symptoms may be helpful (*e.g.* neuromuscular symptoms, myopathy)
- DNA analysis is required to confirm the diagnosis

Diagnostic pitfalls

- Contamination with donor RBCs in transfused patients
- Incomplete leukocyte removal
- Reticulocyte number
- Storage and shipment of samples *e.g.* instability of PFK, TPI
- •Mutant with normal catalytic activity "in vitro"

Molecular heterogenity of PKLR gene in PK deficiency (>300 variants)

Pyrimidine 5'nuleotidase def (P5'-N)

TEST OF THE MONTH

DOI: 10.1002/aih.25325

Addressing the diagnostic gaps in pyruvate kinase deficiency: Consensus recommendations on the diagnosis of pyruvate kinase deficiency

Paola Bianchi¹ [©] | Elisa Fermo¹ | Bertil Glader² | Hitoshi Kanno³ | Archana Agarwal⁴ [©] | Wilma Barcellini¹ [©] | Stefan Eber⁵ | James D. Hoyer⁶ | David J. Kuter⁷ [©] | Tabita Magalhães Maia⁸ | Maria del Mar Mañu-Pereira⁹ | Theodosia A. Kalfa¹⁰ | Serge Pissard¹¹ | José-Carlos Segovia^{12,13} | Eduard van Beers¹⁴ [©] | Patrick G. Gallagher¹⁵ | David C. Rees¹⁶ | Richard van Wijk¹⁷ | with the endorsement of EuroBloodNet, the European Reference Network in Rare Hematological Diseases

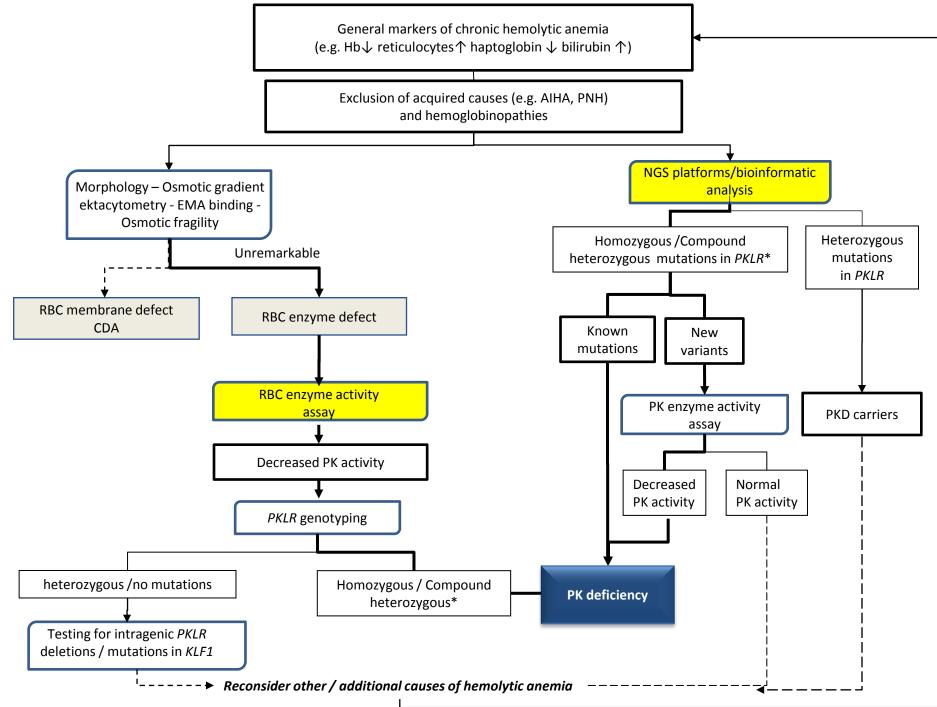
Global PK deficiency International expert group (2016) (24 experts from 20 different Expert Centres) Survey on diagnostic methodologies Forum discussion 7 Centres from EU, 5 from USA, and 1 from Asia

Algorithm for the diagnosis of PK deficiency

 Received: 19 July 2018
 Revised: 19 October 2018
 Accepted: 20 October 2018

 DOI: 10.1002/ajh.25325
 DOI: 10.1002/ajh.25325
 DOI: 10.1002/ajh.25325

TEST OF THE MONTH



Addressing the diagnostic gaps in pyruvate kinase deficiency: Consensus recommendations on the diagnosis of pyruvate kinase deficiency Paola Bianchi¹ | Elisa Fermo¹ | Bertil Glader² | Hitoshi Kanno³ | Archana Agarwal⁴ | Wilma Barcellini¹ | Stefan Eber⁵ | James D. Hoyer⁶ | David J. Kuter⁷ | Tabita Magalhães Maia⁸ | Maria del Mar Mañu-Pereira⁹ | Theodosia A. Kalfa¹⁰ | Serge Pissard¹¹ | José-Carlos Segovia^{12,13} | Eduard van Beers¹⁴ | Patrick G. Gallagher¹⁵ | David C. Rees¹⁶ | Richard van Wijk¹⁷ | with the endorsement of EuroBloodNet, the European Reference Network in Rare Hematological Diseases

	Recommendation	Evidence
Clinical presentation	PK deficiency may be suspected in:	Mean: 95%
	- patients with variable chronic anaemia and/or splenomegaly and/or	Median:
	jaundice, with normal or near-normal red cell morphology.	100% (75-100)
	- transfusion dependent cases of unknown aetiology	
	- haemolytic patients with unexplained severe neonatal indirect	
	hyperbilirubinemia	
	- presence of high reticulocyte number in splenectomised patients with no	
	diagnosis	
	•	
Clinical data	-Information on clinical history (both recent as well as from infancy, ie	Mean: 98.6%
	neonatal jaundice), family history should always be requested together with	Median:100%
	samples, as well as the time of last blood transfusion	(90-100)
Laboratory data	-Complete blood count	Mean: 97%
(mandatory in bold)	-RBC morphology	Median:100%
	-Markers of haemolysis (reticulocyte count, LDH, unconjugated bilirubin,	(90-100)
	haptoglobin ^{1.2})	
Differential diagnosis	Acquired haemolytic anaemia, membranopathies, CDAs, unstable	Mean: 92.1%
	haemoglobins, red cell enzymopathies other than PK deficiency should be	Median:

Biochemical testing		
Reference test for biochemical assay	RBC PK activity assay by spectrophotometry (Beutler, 84)	Mean: 98.7% Median: 100% (80-100)
Storage time of sample	PK enzyme assay may be considered stable at 4° C until up to 21 days after collection ³ . A maximum of 14 days storage is recommended if PK activity is related to HK activity due to different stability of HK activity	Mean: 95% Median: 100% (80-100)
Sample anticoagulant	ACD; EDTA, CPD, Heparin could be considered for the enzyme assay (Beutler, 84): EDTA is the main anticoagulant used in daily practice.	Mean: 100% Median: 100%
Sample preparation	Purification on α -cellulose/microcrystalline cellulose column is recommended. Buffy coat removal may be considered as an alternative. PK enzyme activity cannot be performed on whole blood	Mean: 96.7% Median: 100% (80-100)
Reticulocytes interference	Reticulocyte number must be taken into account when interpreting results of PK enzyme assay, particularly when of low-normal PK activity levels. Results could be compared with enzyme activities obtained from a control sample with the same degree of reticulocytosis, or by calculating the ratio of PK activity to another cell age dependent enzyme (e.g. hexokinase).	Mean: 96.1% Median: 100% (70-100)
Interference of donor red blood cells	The enzyme assay should be performed as far as possible after a red cell transfusion. The laboratory should record the time since transfusion. A minimum of 50 days from last transfusion is considered a "safe" period for testing of PK activity, leading to an estimated donor RBC contamination of about 7-14%. Results of enzyme activity need to be interpreted with caution in transfused patients ⁴ .	Mean: 96.9% Median: 100% (60-100)
Confirmatory tests	In case of decreased PK activity, sequencing of <i>PKLR</i> gene is highly recommended to confirm the diagnosis	Mean: 88.3% Median: 100% (10-100)

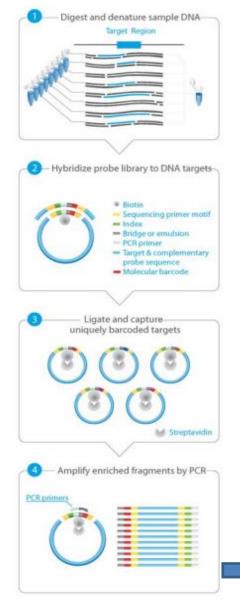
Molecular testing		
Indication	 -Molecular testing is highly recommended to confirm a suspected case of PK deficiency based on decreased enzyme activity. -Molecular testing of <i>PKLR</i> gene by Sanger is suitable for patients with (relatively) decreased PK activity Use of NGS panels is a reliable alternative method for diagnosis of PK deficiency. It is particularly relevant for: neonates (if family study is not available) transfusion dependent patients/recently transfused patients samples with prolonged shipping times 	Mean: 91.2% Median: 100% (10-100)
PKLR genotype discrepancies	 In case of genotype discrepancies (patients with suspected PKD and one or none mutations detected) further investigation are required: -Assays for detection of large deletions -Re-evaluation of other causes of haemolysis by specific tests or NGS platform In absence of any mutation and decreased PK activity: - NGS tools or, <i>KLF1</i> gene mutations should be considered 	Mean: 92.5% Median: 100% (40-100)

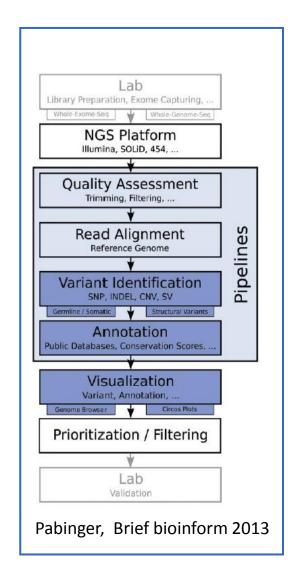
* In trans nature of mutations to be confirmed by family studies

New PK scheme proposal: UK NEQAS

- European collaboration: essential because of small numbers of laboratories in each country
- Performance assessment for quantitative assay
- Could develop to include molecular methods
- Development phases:
 - Survey material development
 - Storage, stability, volumes etc.
 - Recruitment of interested participants
 - · Small scale survey with selected labs
 - Pilot exercise(s) to refine scheme design
 - Development of performance assessment methods

International Quality Expertise




Diagnostic aspects of:

- ✓ Red cell membrane defects
 - hereditary spherocytosis
 - defects of permeability and cell volume regulation
- ✓ Defects of red cell metabolism
 - pyruvate kinase deficiency
- ✓ Targeted Next Generation Sequencing panels

Targeted Next Generation Sequencing panels

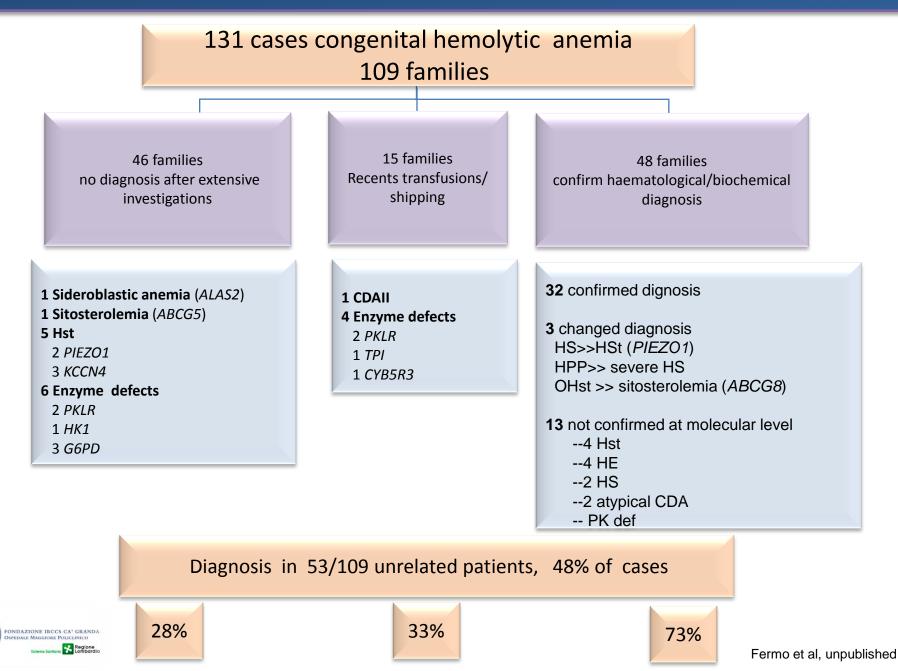
HaloPlex HSTarget Enrichment System Agilent

Sequencing :MiSeq Illumina

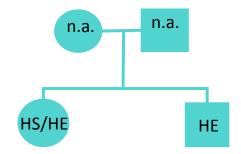
	Genes	Cases	Results
Li Y, et al. Zhonghua Xue Ye Xue Za Zhi. 2018.	217	46	60.9% (41%)
Russo et al. Am J Hematol , 2018	34-71	74	64.9% (45.8%)
Agrawal AM et al, Br J Haem 2016	28	17	70%
Roy et al . Br J Haematol. 2016	33	57	38.6% (22%)

40 genes - Targeted Next Generation Sequencing panel

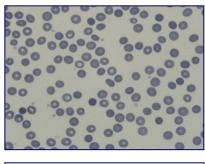
Libraries were obtained by: HaloPlexHS Target Enrichment System Kit (Agilent)

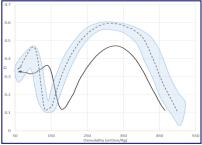

MiSeq platform (Illumina). Amplicons 15766 Coverage: 99.31%

Gene	Ref. Sequence	Gene	Ref. Sequence
ABCB6	NM_005689	GSS	NM_000178
ABCG5	NM_022436	НК1	NM_033497
ABCG8	NM_022437	KCNN4	NM_002250
ALAS2	NM_001037967	KIF23	NM_138555.2
AK1	NM_000476	KLF1	NM_006563.3
ALDOA	NM_000034	NT5C3A	NM_016489.12
BPGM	NM_001293085	PFKL	NM_001002021
C150RF41	NM_001130010	PFKM	NM_000289.5
CDAN1	NM_138477	PGK1	NM_000291.3
CYB5R3	NM_000398	PGM1	NM_001172819
ENO1	NM_001201483	PKLR	NM_000298.5
EPB41	NM_004437.3	PIEZO1	NM_001142864.2
EPB42	NM_000119.2	RHAG	NM_000324.2
G6PD	NM_000402	SEC23B	NM_006363.4
GATA1	NM_002049	SLC2A1	NM_006516
GCLC	NM_001498.3	SLC4A1	NM_000342.3
GCLM	NM_001308253	SLC25A38	NM_017875.2
GPI	NM_000175.3	SPTA1	NM_003126.2
GPX1	NM_000581.2	SPTB	NM_000347.5
GSR	NM_000637	TPI1	NM_000365.5

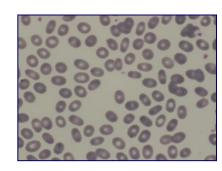


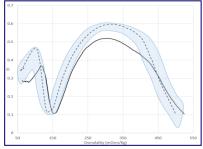
Fermo et al, EHA 2018


Targeted Next Generation Sequencing panel



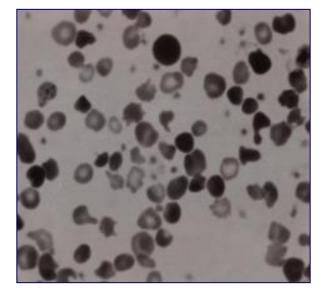
Molecular investigations: contribute to diagnosis

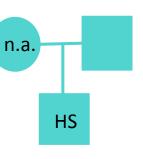

F11-817 SPTA1: L154F/wt SLC4A1 : S510R/wt EMA-binding: $\downarrow \downarrow \downarrow$ SDS-Page: spectrin \downarrow



SPTA1: L154F/wt EMA-binding: Norm SDS-Page: Norm

F11-816



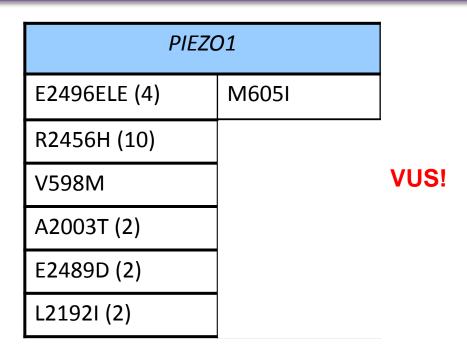


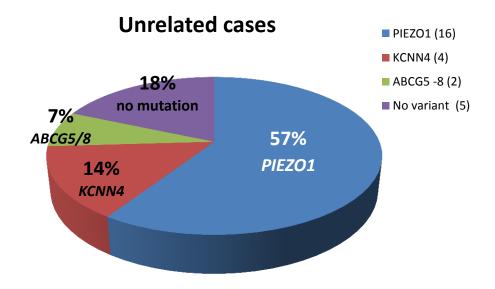
	F13 -723*	F13-776
Hb (g/dL)	13.5	12.3
Retic (abs n.)	176	183
MCV (fL)	108	97.3
Ferritin	817	181
Osm fragility	\downarrow	\downarrow
Ema-binding	$\downarrow\downarrow$	n.a.
SDS-PAGE	Bd3 38% ↓	Bd3 17 %↓
Transfusions	Tx until spl	No
Splenectomy	Yes 6yr	No
Other sympt.	Priapism	No

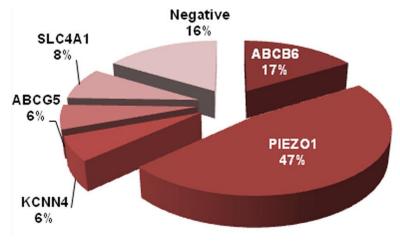
Molecular investigations: contribute to diagnosis

F12-73 Healthy SPTA1: R1047X

F12-74 Healthy SPTA1: abn splicing +Lely


F12 -73 Hb (g/dL)7.8*/11.2 Retic (abs n.) 415 MCV (fL) 73 Ferritin 69 Osm fragility ↓ Ema-binding $\downarrow \downarrow$ SDS-PAGE αSp 68%↓; Ank 56% ↓ Transfusions Tx until spl Splenectomy Yes 7yr


* Pre splenectomy

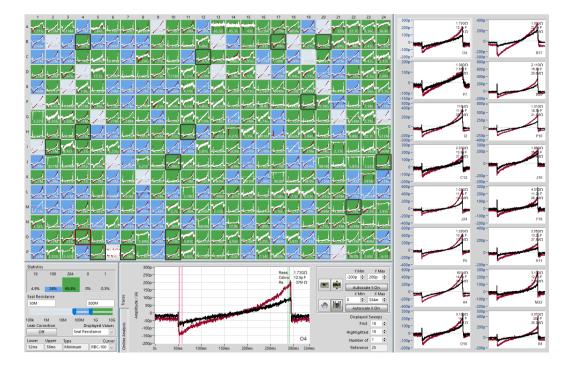

F12-73 SPTA1: R1047X +abn splicing +Lely

Diagnosis of RBC hydrations defects: 41 cases (27 fam)

Molecular abnormality	N. Cases	Families
PIEZO1	23	16
KCNN4	11	4
ABCG5	1	1
ABCG8	1	1
No mutation	5	5

Andolfo et al, 2018

New variants – Functional studies


A novel gain-of-function mutation of Piezo1 is functionally affirmed in red blood cells by high-throughput patch clamp

GM. Rotordam, et al Haematologica 2018

	Patient R2110W	Reference values
Age (years)	43	
Transfusions	no	
Splenomegaly	no	
Hb (g/dL)	16.9	13.4-17.5
MCV (fL)	80.9	80-94
MCHC (g/dL)	39.1	31-37
Reticulocytes (x10 ⁹ /L)	193	20-100
RBCs morphology	7% stomatocytes	
Unconj. bilirubin (mg/dL)	0.66	<1
Serum ferritin (ng/mL)	546	30-400
AGLT	>900	>900
Pink test	7	11-33
NaCl osmotic fragility	decreased	
EMA binding test	normal	

Functional studies – Single cell patch clamp screening assay

- ✓ A patch clamp based high throughput screening assay (SyncroPatch 384/768PE (Nanion Technologies, Munich, Germany) for Piezo1 activity.
- It is the first electrophysiologic single-cell based screening performed on RBCs demonstrating the Piezo1 gain-of-function mutation directly on RBCs and providing a putative routine approach for detecting functional (Piezo1) channel mutations as the molecular cause of rare anaemia that can become a standard method in specialised haematological centres.

Take home message

- ✓ The laboratory diagnosis of congenital haemolytic anaemias is based upon a combination of clinical history, family history, physical examination and laboratory data
- ✓ Identification if a mimimun panel of tests for the diagnosis of these diseases to be standardized
- $\checkmark\,$ EMA binding test for the diagnosis of HS
- ✓ NGS may represent a comprehensive diagnostic method, however not all cases at the moment can be disgnosed but this approach alone.

Thanks!

Fondazione IRCCS Ca' Granda Ospedale maggiore Policlinico Milano - UOC Ematologia UOS Fisiopatologia delle Anemie

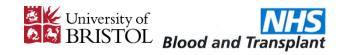
E Fermo, C Vercellati, AP Marcello, A Zaninoni, W Barcellini, A Zanella

Zurich Center for Integrative Human Physiology, Institute of Veterinary Physiology

A Bogdanova, A Makhro, P Hänggi

Sorbonne Université, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Laboratoire d'Excellence GR-Ex, France

S Egee, Monedero D, Peres L, Bouyer G


R van Wijk E van Beers BA van Oirschot

Experimental Physics; Theoretical Medicine and Biosciences; Institute for Molecular Cell Biology

P Petkova-Kirova, L Hertz, J Danielczok, L Kaestner

Bristol Institute of Transfusion Sciences, UK Tim Satchwell Steph Pellegrin Ashley M Toye